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Week 07 

 

Crystallography 

Diffraction 

 

Exercise 1 : 

Answer these questions by true or false: 

 

 True False 

1.  For a similar structure, an isoelectronic ionic crystal will 

exhibit more systematic absence in its diffraction peaks 

compared to a non-isoelectronic crystal.   

  

2.. A systematic absence is a diffraction peak with zero 

intensity, where one would expect to see a peak based on the 

prediction from Bragg’s law, as a result of the internal symmetry 

of the basis of the crystal. 

  

3.  The reciprocal lattice is the Fourier transform of a crystal 

The reciprocal lattice is the Fourier transform of the direct 

lattice, a crystal is the convolution of the lattice and the motif, 

does the Fourier transform includes a term of the unit cell 

structure factor, which includes the atomic form factor of the 

elements of the motif and their arrangement within the unit cell.  

  

4. One can obtain the structure of a crystal by a Fourier 

transform of its diffraction pattern  

Since we can only measure the intensity, which is the square of a 

complex number, we lose the phase information (=the phase 

problem, so a simple Fourier transform is not possible. 

Techniques exist to retrieve the phase under certain conditions, 

but they are not part of these course. 
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Exercise 2:  

You perform an X-ray diffraction experiment (at a wavelength 𝜆 = 1.4 Å)  on a piece of 

iron and you want to determine if it is in the cubic BCC or FCC lattice. 

 

2a. You measure a first order peak at an angle of incidence 
𝜋

6
. The peak is indexed to the 

family of planes {200}.  

(i) What is the lattice parameter ?  

The lattice parameters are the length and angles that define a given crystal 

structure. Since you know it is a cubic structure,  

From Bragg’s law:  

2𝑑(ℎ𝑘𝑙) sin 𝜃 = 𝜆 

Since it is the cubic systel, we know that 𝑑(ℎ𝑘𝑙) =
𝑎

√ℎ2+𝑘2+𝑙2
=

𝑎

√4
=

𝑎

2
, and 

sin (
𝜋

6
) =

1

2
, this gives: 

2 ×
𝑎

2
×

1

2
= 𝜆 

Or equivalently:  

𝑎 = 2𝜆 = 2.8Å 

 

(ii) Would you expect a peak of higher intensity for the FCC or the BCC lattice 

for this plane ?  

The peak intensity depends on the electron density and the {200} planes are denser 

in FCC than in BCC lattice. So we would expect a peak of higher intensity for the 

FCC lattice.  

 

(iii) At what angle would you expect to see a second order peak ?  

From Bragg’s law:  

2𝑑(ℎ𝑘𝑙) sin 𝜃 = 2𝜆 

𝑑(ℎ𝑘𝑙) sin 𝜃 = 𝜆 

𝜃 = arcsin
𝜆

𝑑(ℎ𝑘𝑙)
 

From question 2a. (i), we know that 𝑑(ℎ𝑘𝑙) =
𝑎

2
= 𝜆, leading to  

𝜃 = arcsin 1 =
𝜋

2
 

 

2b. You measure another first order peak at an angle of incidence 
𝜋

3
.  

(i) To which family of plane would it correspond to ?  

Using Bragg’s law as before, we have:  
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2𝑑(ℎ𝑘𝑙) sin 𝜃 = 𝜆 

For the left hand side, we can write: 

2𝑑(ℎ𝑘𝑙) sin
𝜋

3
= 2 𝑑(ℎ𝑘𝑙) (

√3

2
)  

For the right hand side, from the preivous question we know that: 

𝜆 =
𝑎

2
 

So: 

𝑑(ℎ𝑘𝑙) =
𝑎

2√3
=

𝑎

√12
 

Meaning that: ℎ2 + 𝑘2 + 𝑙2 = 12, which is only possible if ℎ = 𝑘 = 𝑙 = ±2. The family 

of planes if therefore {222}. 

 

(ii) Can you conclude that the structure of Iron is BCC  ?  

(Hint: you can use the result of exercise 5e of week 4).  

 

This can only be a BCC lattice as the {222} planes are not crystal planes of the FCC 

lattice, as we showed in the exercise of week 4.   

 

 

Exercise 3: Based-centered Orthorhombic 

Under certain condition of temperature and 

mechanical stress, Titanium can transform 

from a BCC crystal structure into a based-

centered Orthorhombic structure. Two 

conventional cells are shown in the schematic 

where we represented the origin, the 

orthonormal basis ℬ(𝑂,𝒙,𝒚,𝒛) , and the orthogonal 

basis ℬ(𝑂,𝒂,𝒃,𝒄), with:            

𝒂 = 𝑎𝒙, 𝒃 = 𝑏𝒚, 𝒄 = 𝑐𝒛, with (𝑎, 𝑏, 𝑐) are strictly 

positive real numbers, and 𝑎 ≠ 𝑏 ≠ 𝑐.  

 

3a. Are the vectors 𝒂, 𝒃, 𝒄 primitive vectors for the based-centered Orthorombic structure?   

No, they are not. Indeed, the points “P” located in the middle of the faces cannot be 

expressed by a vector like:  

𝑶𝑷 = 𝑛𝒂 + 𝑝𝒃 + 𝑞𝒄 

With (𝑛, 𝑝 𝑞) ∈ ℤ3. Its coordinates will include half-integers.  

 

3b. We define the following vectors:  

c’ 

a’ b’ 

A 

B

 
D 

P 
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𝒂′ =
𝑎

2
𝒙 −

𝑏

2
𝒚;     𝒃′ =

𝑎

2
𝒙 +

𝑏

2
𝒚;         𝒄′ = 𝑐𝒛 

(i) Represent these vectors in the schematic above.   

Look at the schematic above for the correction.  

 

(ii) What is the length of each vectors and the angle between them ? Express 

them as a function of 𝑎, 𝑏 and 𝑐.  

‖𝒂′‖ = ‖𝒃′‖ = √
𝑎2

4
+

𝑏2

4
=

1

2
√𝑎2 + 𝑏2 

‖𝒄′‖ = 𝑐 

𝒄′ is orthogonal to 𝒂′and 𝒃′, so 𝒂′, 𝒄′̂ = 𝒃′, 𝒄′̂ = 90°.  

Then for 𝒂′, 𝒃′̂: 

𝒂′, 𝒃′̂ = 2 tan−1 (
𝑏/2

𝑎/2
) = 2tan−1 (

𝑏

𝑎
) 

We could also use the dot product, with for 𝒂′, 𝒃′̂ = 𝜃: 

𝒂′. 𝒃′ = ‖𝒂′‖‖𝒃′‖ cos 𝜃 

From the left hand side, we have:  

𝒂′. 𝒃′ = (
𝑎/2

−𝑏/2
0

) . (
𝑎/2
𝑏/2

0

) =
1

4
(𝑎 − 𝑏)(𝑎 + 𝑏) 

From the right hand side, we have: 

‖𝒂′‖‖𝒃′‖ cos 𝜃 =
1

4
(𝑎2 + 𝑏2) 

So finally:  

𝜃 = arccos (
(𝑎 − 𝑏)(𝑎 + 𝑏)

𝑎2 + 𝑏2 ) 

You could also have used the dot product to show that the angles 𝒂′, 𝒄′̂ = 𝒃′, 𝒄′̂ = 90°. 

 

(iii) Show that these vectors form a Bravais lattice basis for the base-centered 

Orthorombic structure (in other words, they are primitive vectors).  

(Hint: show it for the lattice point represented in one conventional cell, and use a 

translation symmetry argument to conclude).   

To form a Bravais lattice basis, where vectors are called primitive vectors, every 

lattice point must have coordinates in this basis that are relative integers.  

We can verify that for atoms in the conventional cell (points O, A, B, D, P on the 

schematics, they have relative integers as coordinates in the ℬ(𝑂,𝒂′,𝒃′,𝒄′) basis: 

- Origin has coordiantes (0,0,0) 

- The point at 𝑶𝑨 = 𝒂 is at coordinates (1,1,0). In other words: 𝒂 = 𝒂’ + 𝒃’ 

- The point at 𝑶𝑩 = 𝒃 is at coordinates (-1,1,0). In other words: 𝒃 = −𝒂’ + 𝒃’ 
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- The point at 𝑶𝑫 = 𝒂 + 𝒃 is at coordinates (0,2,0). In other words: 𝒂 + 𝒃 = 𝟐𝒃′ 

- The point P in the middle of the base is at coordinates (0,1,0),  𝑶𝑷 = 𝒃′ 

- All the points in the plane above are shifted by a vector c’, hence adds a +1 to the 

z coordinates.  

 

Hence, all the points in the conventional cells have relative integer coordinates in the 

ℬ(𝑂,𝒂′,𝒃′,𝒄′). By translation symmetry, it is true for all the other conventional cells (you 

could just shift the origin and do the same demo in a neighboring cell).  

So what is true in the conventional cell is also true in the entire crystal, which establishes 

that ℬ(𝑂,𝒂′,𝒃′,𝒄′) is indeed a Bravais lattice basis.  

 

 

You can also use the methods developped in previous exercies, where we divided the 

lattice points into different types. The fact that we consider points shifted by relative 

integers along the axis just expresses mathematically the translation symmetry 

argument made above:  

• First the points along the 𝒙 axis can be expressed as 𝑶𝑨 = 𝑛𝑎𝒙 = 𝑛(𝒂′ + 𝒃′), 

with 𝑛 ∈ ℤ. 

• Similarly for the points along 𝒚 and 𝒛 axes, we have respectively:  

𝑶𝑩 =  𝑝𝑏𝒚 = 𝑝(𝒃′ − 𝒂′) 

𝑶𝑪 =  𝑞𝑐𝒛 = 𝑞𝒄′ 

With 𝑝, 𝑞 ∈ ℤ.  

• Then for the points at the middle of the faces we have:  

𝑶𝑴 = (𝑛 +
1

2
) 𝑎𝒙 + (𝑝 +

1

2
) 𝑏𝒚 + 𝑞𝑐𝒄 

𝑶𝑴 = (𝑛 +
1

2
) (𝒂′ + 𝒃′) + (𝑝 +

1

2
) (𝒃′ − 𝒂′) + 𝑞𝒄′

= 𝒂′(𝑛 − 𝑝) + 𝒃′(𝑛 + 𝑝 + 1) + 𝑞𝒄′ 

As (𝑛, 𝑝, 𝑞) ∈ ℤ3 then (𝑛 − 𝑝), (𝑛 + 𝑝 + 1) and 𝑞 are also integers and the 

vectors 𝒂′, 𝒃′and 𝒄′ form a Bravais lattice basis for the base-centered 

Orthorombic structure.  

 

3c. What is the volume of the primitive cell defined by the vectors 𝒂′, 𝒃′, 𝒄′ ? Solve this in 

two ways:  

(i) By calculating using the volume formula 𝑉 = 𝒂. (𝒃 × 𝒄). 

𝒃′ × 𝒄′ = (
𝑎/2
𝑏/2

0

) × (
0
0
𝑐

) = (
𝑏𝑐/2

−𝑐𝑎/2
0

) 
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𝒂′. (𝒃′ × 𝒄′) = (
𝑎/2

−𝑏/2
0

) . (
𝑏𝑐/2

−𝑐𝑎/2
0

) =
𝑎𝑏𝑐

4
+

𝑎𝑏𝑐

4
=

𝑎𝑏𝑐

2
 

(ii) By comparing the volumes of the conventional and primitive cells, taking into 

account the number of motifss in both.  

We know that we have 2 motifs per conventional cell: 

- 8 corners counting each as 1/8; 

- 2 atoms on faces each counting for ½.  

The volume of the primitive cell must be the volume of the conventional cell divided 

by the number of motif in the conventional cell.  

So the volume of the primitice cell should be:  

𝑉𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 =
𝑉𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙

2
=

𝑎𝑏𝑐

2
 

3d. Show that: 

(i) The vectors of the reciprocal basis of the ℬ(𝑂,𝒂,𝒃,𝒄) basis are given by:  

𝒂𝑹 =
2𝜋

𝑎2 𝒂;      𝒃𝑹 =
2𝜋

𝑏2 𝒃;        𝒄𝑹 =
2𝜋

𝑐2 𝒄  

 

By definition:  

𝒂𝑹 =
2𝜋

𝑉
𝒃 × 𝒄 =

2𝜋

𝑎𝑏𝑐
(

0
𝑏
0

) × (
0
0
𝑐

) =
2𝜋

𝑎𝑏𝑐
(

𝑏𝑐
0
0

) = 2𝜋 (
1/𝑎

0
0

) =
2𝜋

𝑎2 𝒂 

Similarly: 

𝒃𝑹 =
2𝜋

𝑉
𝒄 × 𝒂 =

2𝜋

𝑎𝑏𝑐
(

0
0
𝑐

) × (
𝑎
0
0

) = 2𝜋 (
0

1/𝑏
0

) =
2𝜋

𝑏2 𝒃 

𝒄𝑹 =
2𝜋

𝑉
𝒂 × 𝒃 =

2𝜋

𝑎𝑏𝑐
(

𝑎
0
0

) × (
0
𝑏
0

) = 2𝜋 (
0
0

1/𝑐
) =

2𝜋

𝑐2
𝒄 

(ii) The vectors of the reciprocal basis of  the ℬ(𝑂,𝒂′,𝒃′,𝒄′) basis are given by: 

𝒂𝑹
′ = 2𝜋 (

𝒂

𝑎2 −
𝒃

𝑏2);        𝒃𝑹
′ = 2𝜋 (

𝒂

𝑎2 +
𝒃

𝑏2);      𝒄′𝑹 =
2𝜋

𝑐2 𝒄  

𝒂′𝑹 =
2𝜋

𝑉
𝒃′ × 𝒄′ =

4𝜋

𝑎𝑏𝑐
(

𝑎/2
𝑏/2

0

) × (
0
0
𝑐

) =
4𝜋

𝑎𝑏𝑐
(

𝑏𝑐/2
−𝑎𝑐/2

0

) = 2𝜋 (
1/𝑎

−1/𝑏
0

) = 2𝜋 (
𝒂

𝑎2 −
𝒃

𝑏2
) 

𝒃′𝑹 =
2𝜋

𝑉
𝒄′ × 𝒂′ =

4𝜋

𝑎𝑏𝑐
(

0
0
𝑐

) × (
𝑎/2

−𝑏/2
0

) = 2𝜋 (
1/𝑎
1/𝑏

0

) = 2𝜋 (
𝒂

𝑎2 +
𝒃

𝑏2
) 

𝒄′𝑹 =
2𝜋

𝑉
𝒂′ × 𝒃′ =

4𝜋

𝑎𝑏𝑐
(

𝑎/2
−𝑏/2

0

) × (
𝑎/2
𝑏/2

0

) = 2𝜋 (
0
0

1/𝑐
) =

2𝜋

𝑐2 𝒄 

3e.  
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(i) Express a vector in the orthonormal basis ℬ(𝑂,𝒙,𝒚,𝒛) that is orthogonal to the 

plane of Miller indices (111̅). 

The Miller indices are defined in the conventional basis ℬ(𝑂,𝒂,𝒃,𝒄), so the normal to the 

plane (111̅) is:  

𝑁∗ = 1 × 𝒂𝑹 + 1 × 𝒃𝑹 + (−1)𝒄𝑹 

And from the previous section, we know that:  

𝒂𝑹 =
2𝜋

𝑎2 𝒂 =
2𝜋

𝑎
𝒙;      𝒃𝑹 =

2𝜋

𝑏2 𝒃 =
2𝜋

𝑏
𝒚;        𝒄𝑹 =

2𝜋

𝑐2 𝒄 =
2𝜋

𝑐
𝒛  

So:  

𝑵(ℎ𝑘𝑙)
∗ =

2𝜋

𝑎
𝒙 +

2𝜋

𝑏
𝒚 −

2𝜋

𝑐
𝒛 

In the ℬ(𝑂,𝒙,𝒚,𝒛) basis. 

(ii) What is the distance between the (111̅) parallel planes ?  

By definition:  

𝑑ℎ𝑘𝑙 =
𝑶𝑨. 𝑵(ℎ𝑘𝑙)

∗

‖𝑵(ℎ𝑘𝑙)
∗ ‖

 

Where the point 𝐴 is (
𝑎
0
0

) in the ℬ(𝑂,𝒙,𝒚,𝒛), so:  

𝑶𝑨. 𝑵(ℎ𝑘𝑙)
∗ = (

𝑎
0
0

) . (
2𝜋/𝑎
2𝜋/𝑏

−2𝜋/𝑐
) = 2𝜋 

‖𝑵(ℎ𝑘𝑙)
∗ ‖ = 2𝜋√

1

𝑎2
+

1

𝑏2
+

1

𝑐2
 

And:  

𝑑ℎ𝑘𝑙 =
𝑶𝑨. 𝑵(ℎ𝑘𝑙)

∗

‖𝑵(ℎ𝑘𝑙)
∗ ‖

=
1

√ 1
𝑎2 +

1
𝑏2 +

1
𝑐2

 

 

One can also directly use the distance in the Orthorombic crystal structrure given by:  

𝑑ℎ𝑘𝑙 =
1

√ℎ2

𝑎2 +
𝑘2

𝑏2 +
𝑙2

𝑐2

 

And apply it for the case ℎ = 1, 𝑘 = 1, 𝑙 = −1. 

 

3f. Which planes belong to the same family: (100), (010), (001) ?  

All planes belong to different families because 𝑎 ≠ 𝑏 ≠ 𝑐. If you look at the atomic 

configuration, the distance between atoms and positions are not the same.  

 

 



BA4                                                                                                                                     M. Liebi 

Spring 2025                                                 Structure of Materials                                                    SMX 

 8 

 3g.  

(i) Draw the atom configuration in the planes (100) and (200). Do they belong to 

the same family ?  

 

 

These two planes belong to the same family. You can see from the schematic above that 

the atomic configuration in these planes is identical.  

 

(ii) What are the Miller indices of these planes in the ℬ(𝑂,𝒂′,𝒃′,𝒄′) basis ? 

You can find the Miller indices from the schematics below, i.e. by finding the 

interceptions of the plane with the axes 𝒂′, 𝒃′ and 𝒄′. First for the plane (100), we can see 

that the insersections with 𝒂′, 𝒃′ and 𝒄′ are respectively 2, 2 and 0, so the plane is (110) 

(2 × (
1

2
,

1

2
, 0)). 

For the plane (200), we have:  

c’ 

a’ b’ 
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And we see that this would correspond to the plane (110) too.  

 

Another way to find the Miller indices of the plane (100) in the ℬ(𝑂,𝒂′,𝒃′,𝒄′) basis is:  

• First express the normal to the plane in the ℬ(𝑂,𝒙,𝒚,𝒛) basis: 

 
𝑵(100) = 1 × 𝒂𝑹 + 0 × 𝒃𝑹 + 0 × 𝒄𝑹 =

2𝜋

𝑎
𝒙 =

2𝜋

𝑎2 𝒂 
3.1 

 

• Then find the new indices ℎ′, 𝑘′ and 𝑙′ such that: 

𝑵′
(ℎ′𝑘′𝑙′) = ℎ′ × 𝒂′

𝑹 + 𝑘′ × 𝒃′
𝑹 + 𝑙′ × 𝒄′

𝑹 = 
2𝜋

𝑎2 𝒂 

𝑵′
(ℎ′𝑘′𝑙′) = 2𝜋ℎ′ × (

𝒂

𝑎2 −
𝒃

𝑏2
) + 2𝜋𝑘′ × (

𝒂

𝑎2 +
𝒃

𝑏2
) −

2𝜋𝑙′

𝑐2 𝒄 

 

 
𝑵′(ℎ′𝑘′𝑙′) =

2𝜋

𝑎2
(ℎ′ + 𝑘′)𝒂 +

2𝜋

𝑏2
(ℎ′ − 𝑘′)𝒃 −

2𝜋𝑙′

𝑐2 𝒄 
3.2 

 

In order to have equations 3.1 and 3.2 equal we must have: 𝑙′ = 0, ℎ′ − 𝑘′ = 0 or ℎ′ = 𝑘′ 

and ℎ′ + 𝑘′ = 1. This would lead to the plane (
1

2
,

1

2
, 0), which in reality is (110) as ℎ′, 𝑘′ 

and 𝑙′ must be integers. 

 

You can proceed similarly for the plane (200) and you would find once again that the 

Miller indices in the ℬ(𝑂,𝒂′,𝒃′,𝒄′) basis are also (110).  

 

c’ 

a’ b’ 
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Exercise 4: Structure Factor 

We consider the same base-centered Orthorhombic structure 

studied in exercise 3, and shown again to the right, with one atom 

per motif. It can be seen as a primitive Orthorhombic with a motif 

of more than one atom.  

 

4a. Circle such motif.   

See the schematic for the correction. 

 

4b. Deduce that, for the reflexion of an incident X-ray on an 

arbitrary plane of Miller indices (ℎ𝑘𝑙), the structure factor is given by: 

 𝑆 = 𝑓𝑎(𝑒−𝑖𝑁∗.𝑫𝑶 + 𝑒−𝑖𝑁∗.𝑫𝑷) 

where 𝑁∗ = ℎ𝒂𝑹 + 𝑘𝒃𝑹 + 𝑙𝒄𝑹 is the reciprocal lattice vector in the reciprocal basis 

ℬ(𝑂,𝒂𝑹,𝒃𝑹,𝒄𝑹). 𝑫𝑶 and 𝑫𝑷 are vectors in the direct lattice ℬ(𝑂,𝒂,𝒃,𝒄) of coordinates (0,0,0), and 

(1/2,1/2,0) respectively. 𝑓𝑎 is the form factor of the atom.  

By definition, the structure factor is given by:  

 

𝑆(𝑲) = ∑ 𝑓𝑗(𝑲)𝑒−𝑖𝑲.𝒓𝑗

𝑗

 

 

 

 

We are thus making a sum on all the atoms in the motif. In our case we have two atoms 

of same nature, and thus with the same form factor 𝑓𝑎, and with coordinates 𝒓0 = 𝑫𝟎 =

(
0
0
0

) and 𝒓1 = 𝑫𝑷 = (
1/2
1/2

0

) in the ℬ(𝑂,𝒂,𝒃,𝒄) basis.  

In addition, when we have a diffraction peak, 𝑲 belongs to the reciprocal lattice and can 

thus be written as:  

𝑲 = ℎ𝒂𝑹 + 𝑘𝒃𝑹 + 𝑙𝒄𝑹 = 𝑵∗ 

As a consequence, Eq. 2.1 becomes: 

𝑆(𝑲) = 𝑓𝑎𝑒−𝑖𝑵∗.𝑫0 + 𝑓𝑎𝑒−𝑖𝑵∗.𝑫𝑃 = 𝑓𝑎(𝑒−𝑖𝑵∗.𝑫0 + 𝑒−𝑖𝑵∗.𝑫𝑃) 

 

4c. Show that 𝑆 = 𝑓𝑎(1 + 𝑒−𝑖𝜋(ℎ+𝑘)).  

Let’s compute the two dot products : 

𝑵∗. 𝑫0 = 0 

𝑵∗. 𝑫𝑃 = (ℎ𝒂𝑹 + 𝑘𝒃𝑹 + 𝑙𝒄𝑹). (
1

2
𝒂 +

1

2
𝒃) =

ℎ

2
𝒂𝑹𝒂 +

𝑘

2
𝒃𝑹𝒃 = 𝜋(ℎ + 𝑘) 

Indeed, remember that by construction 𝒂𝑹𝒂 = 𝒃𝑹𝒃 = 𝟐𝝅 and 𝒂𝑹𝒃 = 𝒃𝑹𝒂 = 𝒄𝑹𝒂 = 𝒄𝑹𝒃 =

0. 

Finally, this gives:  
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𝑆(𝑲) = 𝑓𝑎(𝑒−𝑖×0 + 𝑒−𝑖×𝜋(ℎ+𝑘)) = 𝑓𝑎(1 + 𝑒−𝑖𝜋(ℎ+𝑘)) 

 

Another way to solve this question is presented below. Be careful to express all vectors 

in the orthonormal basis ℬ(𝑂,𝒙,𝒚,𝒛) if you want to employ this method.  

From exercise 3, we demonstrated that in the orthonormal basis 𝑵∗ = ℎ𝒂𝑹 + 𝑘𝒃𝑹 + 𝑙𝒄𝑹 

with 𝒂𝑹 =
2𝜋

𝑎2
𝒂 =

2𝜋

𝑎
𝒙, 𝒃𝑹 =

2𝜋

𝑏2
𝒃 =

2𝜋

𝑏
𝒚 and 𝒄𝑹 =

2𝜋

𝑐2
𝒄 =

2𝜋

𝑐
𝒛, so we have: 

𝑵∗. 𝑫0 = (
2𝜋ℎ/𝑎
2𝜋𝑘/𝑏
2𝜋𝑙/𝑐

) (
0
0
0

) = 0 

𝑵∗. 𝑫𝑃 = (
2𝜋ℎ/𝑎
2𝜋𝑘/𝑏
2𝜋𝑙/𝑐

) (
𝑎/2
𝑏/2

0

) = 𝜋(ℎ + 𝑘) 

Similarly we find that:  

𝑆(𝑲) = 𝑓𝑎(𝑒−𝑖×0 + 𝑒−𝑖×𝜋(ℎ+𝑘)) = 𝑓𝑎(1 + 𝑒−𝑖𝜋(ℎ+𝑘)) 

 

 

4d.  

(i) Will the plan (111̅) studied in question 3e exhibit a systematic absence in the 

X-ray diffraction pattern ?  

𝑆(𝑲) = 𝑓𝑎(1 + 𝑒−𝑖𝜋(ℎ+𝑘)) = 𝑓𝑎(1 + 𝑒−𝑖2𝜋)) = 2𝑓𝑎 ≠ 0 

Therefore we don’t expect a sysematic absence in the X-ray diffraction pattern for the 

plane (111̅). 

 

(ii) How about the planes (100) and (200) studied in question 3g? Explain the 

difference of behavior for these two planes.  

For (100): 

𝑆(𝑲) = 𝑓𝑎(1 + 𝑒−𝑖𝜋)) = 0 

For (200): 

𝑆(𝑲) = 𝑓𝑎(1 + 𝑒−𝑖2𝜋)) = 2𝑓𝑎 

So we expect an extinction for (100) but not for (200). 

The planes (100) and (200) are the same, as was shown in 3gi) and for Miller indices  

in the primitive unit cell of the planes (100) and (200) planes are identical (see exercise 

3g (ii)), which means that only one peaks exists. This can be shown either with the 

structure factors as shown above, or also by looking at Bragg law as we have done in the 

lecture (see lecture notes slides 53) 
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Exercise 5: Structure factor of NaCl 

We consider a FCC structure of a metal as shown on the schematics. 

Such structure has one atom per motif, translated along the Bravais 

lattice (or primitive) vectors of the FCC structure.  

To find the structure factor however, we can view the crystal as a 

primitive (or simple) cubic structure with an imaginary motif of several 

atoms.  

 

5a. How many atoms are in this imaginary motif ? Circle it.  

There are 4 atomes in the motif (see schematic). This is actually expected because if we 

view the crystal as a primitive cubic structure, we should have one motif per unit cell 

(definition of the primitive cell). If we now count the number of atoms per unti cell, we 

have: 8 ×
1

8
+ 6 ×

1

2
= 4 atoms. As a consequence: 1 motif = 4 atoms.  

 

5b. What are the coordinates of the atoms in the motif in the ℬ(𝑂,𝒂,𝒃,𝒄) basis?  

The coordinates in the ℬ(𝑂,𝒂,𝒃,𝒄) are: 𝒓𝟎 = (0, 0, 0), 𝒓𝟏 =  (
1

2
,

1

2
, 0) , 𝒓𝟐 =  (

1

2
, 0,

1

2
) , 𝒓𝟑 =

(0,
1

2
,

1

2
). 

 

5c.  

(i) For a given (hkl) plane, deduce that the structure factor for the FCC crystal 

structure is given by:  

𝑆(𝐾) = 𝑓𝑎(1 + 𝑒−𝑖𝜋(ℎ+𝑘) + 𝑒−𝑖𝜋(ℎ+𝑙) + 𝑒−𝑖𝜋(𝑘+𝑙)) 

By definition, the structure factor is:  

 

𝑆(𝑲) = ∑ 𝑓𝑗(𝑲)𝑒−𝑖𝑲.𝒓𝑗

𝑗

 

 

 

 

 

 

As explained in question 5a., with the approach considered we have 4 atoms of same 

nature in the motif and at positions 𝒓𝟎, 𝒓𝟏, 𝒓𝟐 and 𝒓𝟑. In addition, we know that when a 

diffraction peak is observed, 𝑲 must belong to the reciprocal lattice and can thus be 

written 𝑲 = ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗. As a consequence, Eq. 3.1 becomes: 

𝑆(𝑲) = 𝑓𝑎(𝑒−𝑖𝑲.𝒓𝟎 + 𝑒−𝑖𝑲.𝒓𝟏 + 𝑒−𝑖𝑲.𝒓𝟐 + 𝑒−𝑖𝑲.𝒓𝟑) 
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Using the same reasoning as question 4c.: 

𝑲. 𝒓𝟎 = 0 

𝑲. 𝒓𝟏 = (ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗). (
𝒂

2
+

𝒃

2
) =

ℎ

2
𝒂∗𝒂 +

𝑘

2
𝒃∗𝒃 = 𝜋(ℎ + 𝑘) 

𝑲. 𝒓𝟐 = (ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗). (
𝒂

2
+

𝒄

2
) = 𝜋(ℎ + 𝑙) 

𝑲. 𝒓𝟑 = (ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗). (
𝒃

2
+

𝒄

2
) = 𝜋(𝑘 + 𝑙) 

Finally, we obtain:  

𝑆(𝑲) = 𝑓𝑎(1 + 𝑒−𝑖𝜋(ℎ+𝑘) + 𝑒−𝑖𝜋(ℎ+𝑙) + 𝑒−𝑖𝜋(𝑘+𝑙)) 

 

(ii) Conclude that:  

𝑆(𝐾) = 4𝑓𝑎  𝑖f (h, k, l) are all even, or (h, k, l) all odd 

           𝑆(𝐾) = 0 otherwise.  

We have 4 different possibilities to evaluate:  

• (ℎ𝑘𝑙) all even: ℎ + 𝑘, ℎ + 𝑙 and 𝑘 + 𝑙 all even and all the exponential exponents 

are a multiple of 2𝜋. Thus 𝑆(𝑲) = 4𝑓𝑎 

• (ℎ𝑘𝑙) all odd: : ℎ + 𝑘, ℎ + 𝑙 and 𝑘 + 𝑙 all even and all the exponential exponents 

are a multiple of 2𝜋. Thus 𝑆(𝑲) = 4𝑓𝑎 

• If only one odd indice and two even: : let’s assume ℎ is odd and 𝑘 and 𝑙 are even. 

This would lead to ℎ + 𝑘 and ℎ + 𝑙 being odd numbers and:  

𝑆(𝑲) = 𝑓𝑎(1 − 1 − 1 + 1) = 0 

You would obtain the same result assuming that 𝑘 or 𝑙 are odd while all other 

indices are even. 

• If two indices are odd and one even: let’s assume ℎ and 𝑘 are odd and 𝑙 is even. 

As a consequence two of the indice sums are odds, namely ℎ + 𝑙 and 𝑘 + 𝑙 and as 

before we obtain:  

𝑆(𝑲) = 𝑓𝑎(1 + 1 − 1 − 1) = 0 

 

5d. We consider now the structure of sodium chloride (NaCl) 

shown to the right, where the black dots represent the Sodium 

ions.  The structure is FCC with a motif of one atom of Na and 

one of Cl.  

(i) What is the coordination number ?  

The coordination number is 6. 

(ii) Knowing that the ions radius are 1 Å for Na+, and 

1.8 Å for Cl-, would you expect this coordination number from the radius ratio 

rule?  
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The radius ratio 𝜌 =
𝑟+

𝑟−
=

𝑟𝑁𝑎+

𝑟𝐶𝑙−
=

1

1.8
= 0.56. We indeed expect a coordination number 

of 6 for 0.4142 < 𝜌 < 0.7320. 

 

5e.  The structure factor will now take into account the two atoms in the motif, plus the 

“imaginary” motif described above. The NaCl motif is taken such that the Na atom is at 

the origin O, and the Cl atom at coordinates (½,½, ½) in the ℬ(𝑂,𝒂,𝒃,𝒄) basis.  

(i) Show that the structure factor is given by: 

𝑆(𝑲) = (𝑓𝑁𝑎 + 𝑓𝐶𝑙𝑒−𝑖𝜋(ℎ+𝑘+𝑙))(1 + 𝑒−𝑖𝜋(ℎ+𝑘) + 𝑒−𝑖𝜋(ℎ+𝑙) + 𝑒−𝑖𝜋(𝑘+𝑙)) 

The structure factor is:  

𝑆(𝑲) = ∑ 𝑓𝑗(𝑲)𝑒−𝑖𝑲.𝒓𝑗

𝑗

 

If one considers the FCC structure, the motif is now made of 2 atoms, Na and Cl. 

However, to find the structure factor we will use the same procedure as before and view 

this FCC structure as a primitve cubic structure with an imaginary motif of 8 atoms (4 

Cl and 4 Na). Let’s do the analysis of the two atom types separately.  

First for Na, we have the same structure factor as found in question 3c (i) as the 

atoms have the same coordinates: 

𝑆𝑁𝑎(𝑲) = 𝑓𝑁𝑎(1 + 𝑒−𝑖𝜋(ℎ+𝑘) + 𝑒−𝑖𝜋(ℎ+𝑙) + 𝑒−𝑖𝜋(𝑘+𝑙)) 

For the Cl atoms, their coordinates are equivalent to the coordinates of the Na atoms 

+ a translation of 𝒕 = (
1

2
,

1

2
,

1

2
). This gives:  

𝑆𝐶𝑙(𝑲) = 𝑓𝐶𝑙(𝑒−𝑖𝑲.(𝒓𝟎+𝒕) + 𝑒−𝑖𝑲.(𝒓𝟏+𝒕) + 𝑒−𝑖𝑲.(𝒓𝟐+𝒕) + 𝑒−𝑖𝑲.(𝒓𝟑+𝒕))

= 𝑓𝐶𝑙𝑒−𝑖𝑲.𝒕(𝑒−𝑖𝑲.𝒓𝟎 + 𝑒−𝑖𝑲.𝒓𝟏 + 𝑒−𝑖𝑲.𝒓𝟐 + 𝑒−𝑖𝑲.𝒓𝟑) 

With:  

𝑲. 𝒕 = (ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗). (
𝒂

2
+

𝒃

2
+

𝒄

2
) = 𝜋(ℎ + 𝑘 + 𝑙) 

So finally:  

𝑆𝐶𝑙(𝑲) = 𝑓𝐶𝑙𝑒−𝑖𝜋(ℎ+𝑘+𝑙)(1 + 𝑒−𝑖𝜋(ℎ+𝑘) + 𝑒−𝑖𝜋(ℎ+𝑙) + 𝑒−𝑖𝜋(𝑘+𝑙)) 

And: 

𝑆(𝑲) = 𝑆𝑁𝑎(𝑲) + 𝑆𝐶𝑙(𝑲) = (𝑓𝑁𝑎 + 𝑓𝐶𝑙𝑒−𝑖𝜋(ℎ+𝑘+𝑙))(1 + 𝑒−𝑖𝜋(ℎ+𝑘) + 𝑒−𝑖𝜋(ℎ+𝑙) + 𝑒−𝑖𝜋(𝑘+𝑙)) 

 

(ii) Justify that we observe diffraction peaks for the planes like (111), (200) and 

(311).  

• Plane (111): 

𝑆(𝑲) = 4(𝑓𝑁𝑎 − 𝑓𝐶𝑙) ≠ 0 

• Plane (200): 

𝑆(𝑲) = 4(𝑓𝑁𝑎 + 𝑓𝐶𝑙) ≠ 0 
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• Plane (311): 

𝑆(𝑲) = 4(𝑓𝑁𝑎 − 𝑓𝐶𝑙) ≠ 0 

Therefore as 𝑆(𝑲) ≠ 0 for all these planes, we expect to observe a diffraction peak.  

 

(iii) For the crystal Potassium Chloride (KCl) with the same crystal structure, the 

peaks (111) and (311) disappear. Could you explain why ?  

Potassium and Chloride have very similar electronic structures and through the 

formation of an ionic bond between them, the two atoms end up with the same number 

of electrons. As the form factor 𝑓 depends on the electronic density of the atoms, for KCl 

we will have 𝑓𝐾 ≈ 𝑓𝐶𝑙 and thus for the planes (111) and (311): 

𝑆(𝑲) = 4(𝑓𝐾 − 𝑓𝐶𝑙) = 0 

For a similar structure, an isoelectronic ionic crystal will exhibit more systematic 

absence in its diffraction peaks compared to a non-isoelectronic crystal. 

 


